136. Spectroscopic Studies. Part II.¹ The Infrared Spectra and Structure of Methoxyacetonitrile and Chloromethyl Methyl Ether.

By R. G. JONES and W. J. ORVILLE-THOMAS.

The infrared spectra of methoxyacetonitrile and chloromethyl methyl ether have been studied for solutions and the vapour and the liquid state. The band contours prove that the molecules in the vapour state are most stable when they have a slightly twisted *trans*-conformation.

METHOXYACETONITRILE, MeO·CH₂·CN, and chloromethyl methyl ether, MeO·CH₂Cl, differ only in that the nitrile group of one is replaced by a chlorine atom in the other. Since the nitrile group and the chlorine atom have approximately the same electronegativity and mass it is reasonable to expect that the vibrational frequencies of the MeO·CH₂ group will change little from one to the other compound.

In both molecules rotation about the $MeO-CH_2X$ bond is possible (see I—V). In their most stable states the molecules will have particular conformations corresponding to definite values for the moments of inertia. A study of the band contours, obtained from vapour-phase spectra, then, should give a reliable indication as to the most stable conformation.

Chloromethyl methyl ether and the corresponding sulphide have been studied by Hayashi.² The Raman spectra of both our compounds have been recorded.^{2,3}

Experimental.—Methoxyacetonitrile was prepared by addition of an excess of dimethyl sulphate to the product of reaction between potassium cyanide and aqueous formaldehyde

FIG. 1. Infrared spectra of MeO·CH₂·CN: (a) vapour (~100 mm.; 120°); (b) ~0·1Msolution; (c) liquid.

- ¹ Part I, Yarwood and Orville-Thomas, J., 1963, 5991.
- ² Hayashi, Nippon Kagaku Zasshi, 1959, 80, 1079.
- ³ Kohlrausch and Ypsilanti, Z. phys. Chem., 1935, B, 29, 290.

at $<10^{\circ}$. The product was extracted with ether, dried, recovered, and distilled at 1 atm. (b. p. 121°; lit.,⁴ 119°/736 mm.).

Chloromethyl methyl ether, prepared by reaction between methanol, aqueous formaldehyde, and hydrogen chloride,⁵ had b. p. $58 \cdot 5^{\circ}$ (lit., $55-60^{\circ}$).

The spectra were recorded on a Grubb-Parsons G.S. 2A double-beam infrared spectrometer calibrated with ammonia.

A Pyrex-glass vapour cell which allowed a temperature variation over the range $20-200^{\circ}$ was used for the vapour spectra. Matched metal cells (4.72 and 9.78 mm. in length) were used

FIG. 2. Infrared spectra of MeO·CH₂Cl: (a) vapour (~100 mm.; 60°); (b) ~0·1Msolution; (c) liquid.

for solution spectra (chloroform, carbon tetrachloride, and carbon disulphide). The spectra of capillary and 0.1 mm. liquid films were also obtained.

The spectra are reproduced in Figs. 1 and 2 and the frequencies given in Tables 1 and 2.

	Liquid	Infra	red spectrum o	f methoxyaceto tions	onitrile.		
Raman	Capillary	0.75 mm. 4447 4404 4356 4269 4201 4064 3949 3640 3568 3132	CCl ₄ (0.5 cm.)	CS ₂ (0·5 cm.)	Vapour	3008 2946 3008 3008 2916 2837 2256 2257 2257	$\begin{array}{r} \text{Assignment} \\ + 1450 = 4458 \\ + 1460 = 4406 \\ + 1370 = 4378 \\ + 1287 = 4295 \\ + 1196 = 4204 \\ + 1158 = 4074 \\ + 1115 = 3952 \\ + 1380 = 3636 \\ + 1289 = 3546 \\ + 886 = 3143 \end{array}$
3009	3008		3007	3002	$\left. \begin{array}{c} 3018\\ 3010\\ 3000 \end{array} \right\}$	CH2	Antisym. stretch
2980 2933	2946	·	2940 2936	2963 2932	$2950 \\ 2931 \\ 2908 \\ 2008 \\ $	CH ₂ CH ₃	Sym. stretch Antisym. stretch
2914 2872	2916		2902	2893	$\left. \begin{array}{c} 2300\\ 2897\\ 2889 \end{array} \right\}$	• CH3	Antisym. stretch
2832	2837		2849 2832	2843 2824	$\left. \begin{array}{c} 2831\\ 2822 \end{array} \right\}$	СН ₃	Sym. stretch

TABLE 1.						
Infrared spectrum of methoxyacetonitrile						

⁴ Polstorff and Meyer, Ber., 1912, 45, 1905.

⁵ Marvel and Porter, Org. Synth., 1941, 1, 377.

Jones and Orville-Thomas:

			TABLE 1.	(Continued.)		
	Liquid		Solu	tions		
Raman	Capillary	0.75 mm.	CCl ₄ (0.5 cm.)	CS, (0.5 cm.)	Vapour	Assignment
	1 0	2656	• • • • •	- · · /	1	$1289 \pm 1370 = 2659$
	2627	2629				1460 + 1158 = 2618
		2603		2595		1460 + 1158 = 2618
	2463	2464				1289 + 1196 = 2485
	2442	2444				1289 + 1158 = 2447
	2389	2390				$2 \times 1196 = 2392$
	2302	2301				$2 \times 1158 = 2316$
2243	2256				2251	CN Stretch
	2207	2206				$2 \times 1115 = 2230$
	2105	2105			2136	1115 + 1014 = 2129
	2064	2061		2078	2060	886 + 1196 = 2082
	2023	2021	1 - 20	2025		886 + 1158 = 2044
	1757	1758	1758	1760		$2 \times 886 = 1772$
	1631	1631			1454 3	1290 + 360 = 1650
	1466				14/4	CH ₂ Bend
	1400		1461		1407	CH ₃ Antisym. bend
1455	1408		1401		1400	
1435	1430		1435		1430	CH Antisym bend
1400	1380		1378		1376	ena Antisyni. Benu
	1374		1010		1370	CH. Sym. bend
1363			1367		1364	
	1359		1354		1359	CH. Wag
				1351	1349	2 6
					1294 ງ໌	
1285	1289		1284	1282	1288	· CH ₂ Twist
					1279 J	1014 (040) 1074
	1242				1207	1014 + (240) = 1254
1185	1196		1188	1192	1200	CH. Rock
					1193	
	1158		1158	1156	1161	CH, Rock
1112	1115		1117	1117	ן 1136	COČ Asym. stretch
					1128 J	-
					ן 1023	
	1014			1012	1017	\cdot CH ₂ Rock
	990				1009)	1360 - 360 = 1000
	961			965		2256 - 1289 = 967
955						
			010		937]	000 0 1 1
914	915		919	917	922	• COC Sym. stretch
					924 J	
000	000		005		899	C C Stretzh
884	000		900		882	C-C Stretch
	844	838			00 <u>4</u>)	$2 \times 420 = 840$
	704	709		694		$2 \times 350 = 700$
	586	586				350 + 240 = 590
404	(425)					COC Bend
352	(360)					CCO Bend
242	(230)					CCN Bend

TABLE 2.

Infrared spectrum of chloromethyl methyl ether.

		· · · · 1		5	5	
	Liquid		Solu	tion		
Raman	Capillary	0·1 mm. 4459 4413 4284 4207 4091 4028 3961	CCI4	CS ₂	Vapour	$\begin{array}{r} \text{Assignment} \\ 2295 + 1470 = 4465 \\ 2958 + 1470 = 4428 \\ 2903 + 1397 = 4300 \\ 2903 + 1320 = 4223 \\ 2837 + 1278 = 4115 \\ 2837 + 1193 = 4030 \\ 2837 + 1120 = 3957 \end{array}$
3027	2995		2994	3030	3013	CH ₂ Antisym. stretch
2980	2958		2948	2940	2980	CH ₂ Sym. stretch

TABLE 2. (Continued.)

	Liquid		Solu	tion		
Raman	Capillary	0.1 mm.	CCl4	CS ₂	Vapour	Assignment
$2950 \\ 2912 \\ 2837$	2943 2903 2837 2778		2932 2897 2830 2770	2926 2862 2824 2805	$2946 \\ 2901 \\ 2844$	CH_3 Antisym. stretch CH_3 Antisym. stretch CH_3 Antisym. stretch 1460 + 1320 = 2780
2464		$2632 \\ 2606 \\ 2464 \\ 2438$				$2 \times 1320 = 2640$ 1460 + 1156 = 2616 1470 + 996 = 2466 1320 + 1120 = 2440
		2389 2311 2238 2193				2 imes 1193 = 2386 1397 + 920 = 2317 1320 + 920 = 2240 1278 + 920 = 2198 1278 + 920 = 2198
	2108 2032	2113 2036 1845 1776 1650 1576				$\begin{array}{r} 1193 + 920 = 2113\\ 920 + 1120 = 2040\\ 2 \times 920 = 1840\\ 2903 - 1120 = 1783\\ 1320 + 350 = 1650\\ 2995 - 1397 = 1598 \end{array}$
1470	1470	1570			1476	CH_2 Bend
1460	1467		1461		1470)	CH ₃ Antisym. bend
1435	1400		1446		1440	0113 11000 0000
1398	1397		1396		1408 1400 1392	• CH ₃ Sym. bend
1321	1320		1317	13 15	1331 1324 1317 1286	CH ₂ Wag
1279	1278			1273	1278	CH ₂ Twist
1231					1236 1206	1397 - 160 = 1237
					1198 1190	CH ₃ Rock
1147	1156		1156	1153	1156 1148	CH ₃ Rock
				1138	ل 1138 ل 1138 (·
1128	1120		1131	1129	1128 1121	COC Asym. stretch
					ר 1092 1064 ר	$\begin{array}{r} 1450 - 350 = 1100 \\ 1397 - 350 = 1047 \end{array}$
	1042		1043	1043	1054 J 1008)	
998	996			990	1000 993 943	CH ₂ Rock
920	920		925	917	937 932	COC Sym. stretch
		805			686	350 + 466 = 816
651	646			640	679 677 670	C-Cl Stretch
455	466					COC Bend
177 107	(160)					Me-O Torsion MeO-CH ₂ Cl Torsion

The Stable Conformations.-The type of contour obtained for vibrational bands (i.e., the PQR structure) and the P-R sub-band separation depend critically on the moments of inertia of the molecule. These, in turn, depend on the conformation (see I-V). As one part of the molecule rotates with respect to the other the absolute and the relative magnitudes of the three principal moments of inertia change; consequently the band contours and separations change.

Molecular dimensions have not been determined for methoxyacetonitrile or for chloromethyl methyl ether. Hence, from a study of similar molecules the parameters given in Table 3 were chosen. With these values moments of inertia were calculated for each of the conformations illustrated (see Table 4).

TABLE 3.

Dimensions of MeO·CH₂X.

	-					
	С-О	∠coc	∠ocx	CC(I)	C - N(I)	C-Cl(II)
MeO·CH ₂ ·CN	1.42	110°	111°	1.47	1 16	
MeO·CH ₂ Cl	1.42	110	112°			1.74

TABLE 4.

	I.	A	In	В	Ic	С	$\Delta \nu (P-R)$ (cm. ⁻¹)
MeO·CH ₂ ·CN	- A		- 5		-0	•	
Ī	53	0.53	166	0.12	219	0.13	21.1
II	41	0.68	224	0.13	270	0.10	17.9
III	28	0· 9 9	157	0.18	175	0.16	21.5
IV	38	0.75	266	0.11	343	0.08	16.1
\mathbf{V}	17	1.65	321	0.09	338	0.08	13.9
MeO·CH ₂ Cl							
Ĩ	63	0.45	161	0.17	224	0.13	20.4
II	51	0.55	205	0.14	244	0.12	18.0
III	23	1.20	147	0.19	161	0.18	20.9
IV	59	0.47	242	0.12	329	0·0 9	15.5
v	14	2.02	304	0.09	318	0.09	13.5

The moments of inertia indicate that the molecules approximate to symmetric rotors, especially for conformations near to (V). By means of the theory developed by Gerhard and Dennison⁶ the P-R separations have been calculated, for parallel-type bands, from the expression,

where
$$\begin{aligned} \Delta \nu(P,R) &= \frac{S}{\pi} \left(\frac{kT}{I}\right)^{\frac{1}{2}} \\ S &= 0.721/(\beta+4)^{1.13}, \ \beta &= (I-I_A)/I_A, \\ I &= (I_B+I_C)/2. \end{aligned}$$

The values obtained are given in Table 4, and expressed diagrammatically in Fig. 3. The P-R separations found experimentally for parallel-type bands (or type A bands, as described by Badger and Zumwalt 7) are given in Table 5.

TABLE 5.

Observed P-R separations of parallel-type bands.

MeO·CH ₂ ·CN	MeO·CH ₂ Cl		
$ \begin{array}{c} 1349\\ 1359\\ 1364\\ 1279\\ 1288\\ 1294\\ 1294\\ 1294\\ 1200\\ 1207\\ \end{array} \right\} 15 \pm 1 \\ 1017\\ 1017\\ 1017\\ 1023\\ 1009\\ 1009\\ 1009\\ 1017\\ 1017\\ 1023\\ 1009\\ 1009\\ 1009\\ 1009\\ 1009\\ 1009\\ 14 \pm 1 \\ 932\\ 937\\ \end{array} \right\} 13 \pm 1 \\ \begin{array}{c} 1123\\ 109\\ 14 \pm 1 \\ 932\\ 937\\ 13 \pm 1 \end{array} \right) $	$ \begin{array}{c} 1408\\ 1400\\ 1392 \\ \end{array} \right\} 16 \pm 1\\ 1331\\ 1324\\ 11317 \\ 1286\\ 1278\\ 1270 \\ \end{array} \right\} 14 \pm 1\\ 16 \pm 1\\ 16 \pm 1\\ 1270 \\ \end{array} $	$ \begin{array}{c} 1156\\ 1148\\ 1138\\ 1138\\ 1121\\ 1128\\ 1138\\ 1138\\ 1138\\ 117 \pm 1\\ 138\\ 686\\ 679\\ 677\\ 677\\ 670\\ 670\\ 670\\ 16 \pm 1\\ 670\\ 670\\ 670\\ 670\\ 670\\ 670\\ 670\\ 670$	

• Gerhard and Dennison, Phys. Rev., 1933, 43, 197.

⁷ Badger and Zumwalt, J. Chem. Phys., 1938, 6, 711.

Х

C

Me

From a comparison of the observed and calculated P-R separations it is evident that, in both cases, the stable conformations are very close to model (V). That is, the "heavy "-

atom skeleton is almost planar-trans in form. This conclusion differs from that of Hayashi² who favours a *gauche* conformation (II) for chloromethyl methyl ether in the vapour state.

If the oxygen lone-pairs forming atomic dipoles are taken into account the terminal groups are seen to be staggered about the C-O bond. In terms of bond-bond and bond-lone-pair repulsions this represents a most reasonable model.

Vibrational Assignment.—All the fundamental modes of vibration are infrared-active. The vibrations can be conveniently divided for discussion into (i) the methyl and methylene vibrations and (ii) those associated with the COCX skeleton.

(i) CH *Vibrations*. Tables 1 and 2 contain the assignments for these molecules made on the basis of vapour-phase band contours and comparisons with related molecules. The ranges within which the various types of methyl vibrations occur are well-known and there is little uncertainty in the assignments made.

Assignment of frequencies to the methylene bond-stretching modes is straightforward, but this is not so with the various deformation modes since they tend to vary over large spectral regions. For example the CH_2 rocking band occurring at 1176 cm.⁻¹ in methylene diffuoride is at 714 cm.⁻¹ for methylene di-iodide, a decrease of some 39%. In a recent study ⁸ relations have been found between the methylene deformation frequencies in

 CH_2XY molecules and the electronegativity product $\chi(X)\chi(Y)$. These correlations have been used to predict group electronegativities of 3.76 (MeO) and 3.20 (CN) corresponding to values centred near 1470, 1340, 1250, and 1000 cm.⁻¹, respectively, for the bending, wagging, twisting, and rocking CH_2 vibrations. The observed values are in good accord with these predictions.

(ii) Skeletal vibrations. Three bands are expected to arise from the skeletal stretching vibrations in chloromethyl methyl ether. Two of these are best regarded as an asymmetric and a symmetric stretching mode of the COC grouping, $v_a(COC)$ and $v_s(COC)$ whilst the third, v(CCl), is primarily localised within the CCl band. In methoxyacetonitrile there are four stretching modes, $v_a(COC)$, $v_s(COC)$, and two others which can be approximately described as v(CC) and v(CN).

⁸ Jones and Orville-Thomas, Spectrochim. Acta, 1963, in the press.

The v(CN) fundamental occurs near 2250 cm.⁻¹, in all phases, with the very low intensity characteristic of β -oxygenated nitriles.

Assignment of the vibrations of the COCX chain in these molecules was facilitated by direct comparison of the vapour spectra. Three absorption bands, of strong to medium intensity, were found in the region 1150-800 cm.⁻¹ of the spectrum of methoxyacetonitrile. The strong absorption with an almost pure B-type contour, at 1132 cm^{-1} , is assigned to the $v_a(COC)$ stretching vibration. The frequency of the carbon-oxygen stretching vibration for gaseous methanol is 1030 cm.⁻¹. If it is assumed that coupling between the stretching modes of vibration of the COC chain results in splitting of degenerate energy levels to give energy-level pairs equally spaced on either side of the unperturbed v(CO) vibrational level, it can be predicted that the frequency of the symmetric stretching vibration of the COC chain will be near 1030 - (1130 - 1030) = 930 cm.⁻¹. Two absorption bands, with hybrid contours, at 932 and 890 cm.⁻¹, were observed in the vapour spectrum of methoxyacetonitrile. The higher-frequency band is therefore assigned to $v_{s}(COC)$ and the other to v(CC). This assignment is supported by the fact that replacement of the nitrile group by chlorine results in the disappearance of the 890 cm.⁻¹ band, but does not significantly perturb the spectrum above 900 cm.⁻¹. This is to be expected because the chlorine atom does not differ much in mass or electronegativity from the nitrile group.

It has been shown that for molecules exhibiting rotational isomerism certain group frequencies are characteristic of particular isomeric conformations. For example, for *trans*-monochlorinated hydrocarbons $\nu(CCl)$ varies from 726 (n-propyl) to 616 cm.⁻¹ (t-pentyl), and the *gauche*-frequencies range between 645 and 560 cm.⁻¹ for the same series.⁹ In the spectra of chloromethyl methyl ether only one $\nu(CCl)$ band, centred at 646 cm.⁻¹, was detected. The band contours indicate clearly that this band should be assigned to $\nu(CCl)$ in the *trans*-conformation. The absence of a second $\nu(CCl)$ band indicates that the *gauche*-isomer is present to a very small extent, if at all.

The bond-bending fundamentals of the skeleton lie below the range studied. The vibrations can be approximately described for MeO·CH₂Cl as COC bending [b(COC), b(OCC), both in the plane of the skeleton framework], and an out-of-plane vibration which could be described as b(OC) or b(CCl): for MeO·CH₂·CN one has b(COC), b(OCC), b(CCC), b(CCC) (all in-plane) and either b(OC) or b(CN) (out-of-plane).

The corresponding frequencies are expected to be below 500 cm.⁻¹.

Three weak bands, at 838, 709, and 586 cm.⁻¹, were observed in the spectrum of liquid methoxyacetonitrile. These can be assigned as overtone or combination bands in a number of ways. The interpretation of other combination bands observed in the higher-frequency region is made more plausible if these frequencies are assigned as follows:

$$b(\text{COC}) \approx b(\text{OCC}) = 425 \text{ cm}^{-1}; \quad b(\text{CNN}), \text{ in-plane} = 360 \text{ cm}^{-1}; \\ b(\text{CCN}), \text{ out-of-plane} = 230 \text{ cm}^{-1}.$$

The torsional modes of methyl groups about a C–O bond have been assigned tentatively ¹⁰ to bands at 160 and 230 cm.⁻¹. The torsional mode around a MeO–CH₂X bond would be expected to have an even lower frequency.

Edwards Davies Chemical Laboratory, University College of Wales, Aberystwyth. [Present address (R. G. J.): National Research Council, OTTAWA, CANADA.] [Received, June 27th, 1963.]

⁹ Brown and Sheppard, Trans. Faraday Soc., 1954, 50, 1164.

¹⁰ Herzberg, "Spectra of Polyatomic Molecules," D. Van Nostrand Co., Inc., New York, 1945.